5. Coordinate Geometry

Introduction for Exercise 5.1

Concept corner

Distance between two points:

Distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$|AB| = d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Mid – point of line segment:

The mid – point M, of the line segment joining

$$A(x_1, y_1)$$
 and $B(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

Section Formula

Internal Division:

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two distinct points such that point P(x, y) divides AB **internally** in the ratio m: n.

External Division:

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two distinct points such that point P(x, y) divides AB **externally** in the ratio m: n.

Then the coordinates of *P* are given by $\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}\right)$.

Centroid of a triangle:

The coordinates of the centroid (G) of a triangle with vertices

$$A(x_1, y_1), B(x_2, y_2)$$
 and $C(x_3, y_3)$ are given by $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$.

Area of a Triangle:

Area of $\triangle ABC = \frac{1}{2} \{x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)\}$ Sq. units.

Another form: Area of
$$\triangle ABC = \frac{1}{2} \begin{cases} x_1 \\ y_1 \end{cases} x_2 \\ y_2 \end{cases} x_3 \begin{cases} x_3 \\ y_3 \end{cases} x_1 \\ y_3 \end{cases}$$
 sq.units
$$= \frac{1}{2} \{ (x_1 y_2 + x_2 y_3 + x_3 y_1) - (x_2 y_1 + x_3 y_2 + x_1 y_3) \}$$
 sq.units

Note: "As the area of a triangle can never be negative, we must take the absolute value, in case are happens to be negative".

Collinearity of three points:

Three points $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ will be collinear if the area of $\triangle ABC = 0$.

Note: Another condition for collinearity:

If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are collinear points, then

$$x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0 \text{ or } x_1y_2 + x_2y_3 + x_3y_1 = x_1y_3 + x_2y_1 + x_3y_2.$$

Area of the quadrilateral:

Area of the quadrilateral ABCD

$$= \frac{1}{2} \{ (x_1 y_2 + x_2 y_3 + x_3 y_4 + x_4 y_1) - (x_2 y_1 + x_3 y_2 + x_4 y_3 + x_1 y_4) \}$$
 sq.units

Note:

- To find the area of a quadrilateral, we divide it into triangular regions, which have no common area and then add the area of these regions.
- The area of the quadrilateral is never negative. That is, we always take the area of quadrilateral as positive.

Introduction for Exercise 5.2

Concept corner

Note: The inclination of a line or the **angle of inclination** of a line is the angle which a straight line makes with the positive direction of X axis measured in the counter – clockwise direction to the part of the line above the X axis. The inclination of the line is usually denoted by θ .

- \triangleright The inclination of X axis and every line parallel to X axis is 0°
- \triangleright The inclination of *Y* axis and every line parallel to *Y* axis is 90°

Definition: If θ is the angle of inclination of a non-vertical straight line, then $tan\theta$ is called the **slope** or gradient of the line and is denoted by m.

Therefore the slope of the straight line is $m = tan\theta$, $0 \le \theta \le 180^{\circ}$, $\theta \ne 90^{\circ}$

Note: The slope of a vertical line is undefined.

Values of slopes

S.no	Condition	Slope	Diagram
(i)	$\theta=0^{\circ}$	The line is parallel to the positive direction of <i>X</i> axis.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(ii)	0 < θ < 90°	The line has positive slope (A line with positive slope rises from left to right)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(iii)	90° < θ < 180°	The line has negative slope (A line with negative slope falls from left to right).	Y Y Y Y Y Y Y Y Y Y

(iv)	$\theta=180^{\circ}$	The line is parallel to the negative direction of <i>X</i> axis.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(v)	$\theta = 90^{\circ}$	The slope is undefined.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Two non-vertical lines are parallel if and only if their slopes are equal.
- Year Two non-vertical lines with slopes m_1 and m_2 are perpendicular if and only if $m_1m_2=-1$.

Note:

- \triangleright Let l_1 and l_2 be two lines with well-defined slopes m_1 and m_2 respectively, then (i) l_1 is parallel to l_2 if and only if $m_1 = m_2$. (ii) l_1 is perpendicular to l_2 if and only if $m_1 m_2 = -1$.
- In any triangle, exterior angle is equal to sum of the interior opposite angles.
- If the slopes of both the pairs of opposite sides are equal then the quadrilateral is a parallelogram.

Introduction for Exercise 5.3

Concept corner

Straight line: Any first degree equation in two variables x and y of the form ax + by + c = 0 where a, b, c are real numbers and at least one of *a*, *b* is non-zero is called "**Straight line**" in *xy* plane.

Equation of coordinate axes

The *X* axis and *Y* axis together are called coordinate axes.

Equation of x axis is y = 0

Equation of *y* axis is x = 0

Equation of a straight line parallel to *X* axis

Let AB be a straight line parallel to X axis, which is at a distance 'b' Then y coordinate of every point on 'AB' is 'b'.

Therefore, the equation of AB is y = b

Note:

- ▶ If b > 0, then the line y = b lies above the X axis
- ightharpoonup If b < 0, then the line y = b lies below the X axis
- ➤ If b = 0, then the line y = b is the X axis itself.

Equations of a Straight line parallel to the *Y* axis

Let CD be a straight line parallel to Y axis, which is at a distance 'c'. Then x coordinate of every point on CD is 'c'. The equation of CD is x = c.

Note:

- ightharpoonup If c > 0, then the line x = c lies right to the side of the Y axis
- ightharpoonup If c < 0, then the line x = c lies left to the side of the Y axis
- ightharpoonup If c=0, then the line x=c is the Y axis itself.

Slope - Intercept Form

Every straight line that is not vertical will cut the *Y* axis at a single point. The *y* coordinate of this point is called *y* **intercept** of the line.

A line with slope m and y intercept c can be expressed through the equation y = mx + c

- If a line with slope $m, m \neq 0$ makes x intercept d, then the equation of the straight line is y = m(x d).
- \rightarrow y = mx represent equation of a line with slope m and passing through the origin.

Equation of Straight line in various forms:

	Name	Form	
1	General form	ax + by + c = 0	
2	Point – slope form	$y - y_1 = m(x - x_1)$	
3	Slope - intercept	y = mx + c	
4	Two point form	$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$	

	Name	Form
5	Intercept form	$\frac{x}{a} + \frac{y}{b} = 1$
6	Parallel to Y axis	x = c
7	Parallel to X axis	y = b

Introduction for Exercise 5.4

Concept corner

General Form of a Straight Line

The linear equation (first degree polynomial in two variables x and y) ax + by + c = 0 (where a, b and c are real numbers such that at least one of a, b is non-zero) always represents a straight line. This is the general form of a straight line.

Now, let us find out the equations of a straight line in the following cases

- (i) parallel to ax + by + c = 0
 - The equation of all lines parallel to the line ax + by + c = 0 can be put in the form ax + by + k = 0 for different values of k.
- (ii) perpendicular to ax + by + c = 0
 - The equation of all lines perpendicular to the line ax + by + c = 0 can be written as bx ay + k = 0 for different values of k.
- (iii) The point of intersection of two intersecting straight lines
 - Two straight lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ where the coefficients are non-zero, are
 - (i) parallel if and only if $\frac{a_1}{a_2} = \frac{b_1}{b_2}$; That is, $a_1b_2 a_2b_1 = 0$
 - (ii) perpendicular if and only if $a_1a_2 + b_1b_2 = 0$

Slope of a straight line ax + by + c = 0:

Slope
$$m = \frac{-\operatorname{coefficient of } x}{\operatorname{coefficient of } y} = -\frac{a}{b}$$
, $y \operatorname{intercept} = \frac{-\operatorname{constant term}}{\operatorname{coefficient of } y} = -\frac{c}{b}$