5. Coordinate Geometry

Introduction for Exercise 5.1

Concept corner

Distance between two points:

Distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
|A B|=d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Mid - point of line segment:

The mid - point M, of the line segment joining
$A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Section Formula

Internal Division:

Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two distinct points such that point $P(x, y)$ divides $A B$ internally in the ratio m : n.
Then the coordinates of P are given by $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

External Division:

Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two distinct points such that point $P(x, y)$ divides $A B$ externally in the ratio m : n.
Then the coordinates of P are given by $\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right)$.

Centroid of a triangle:

The coordinates of the centroid (G) of a triangle with vertices $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are given by $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.

Area of a Triangle:

Area of $\triangle A B C=\frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}$ Sq. units.

$$
=\frac{1}{2}\left\{\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}\right)-\left(x_{2} y_{1}+x_{3} y_{2}+x_{1} y_{3}\right)\right\} \text { sq.units }
$$

Note: "As the area of a triangle can never be negative, we must take the absolute value, in case are happens to be negative".

Collinearity of three points:

Three points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ will be collinear if the area of $\triangle A B C=0$.
Note: Another condition for collinearity:
If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are collinear points, then

$$
x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0 \text { or } x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}=x_{1} y_{3}+x_{2} y_{1}+x_{3} y_{2}
$$

Area of the quadrilateral:
Area of the quadrilateral $A B C D$

$$
=\frac{1}{2}\left\{\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{1}\right)-\left(x_{2} y_{1}+x_{3} y_{2}+x_{4} y_{3}+x_{1} y_{4}\right)\right\} \text { sq.units }
$$

Note:

- To find the area of a quadrilateral, we divide it into triangular regions, which have no common area and then add the area of these regions.
- The area of the quadrilateral is never negative. That is, we always take the area of quadrilateral as positive.

Introduction for Exercise 5.2

Concept corner

Note: The inclination of a line or the angle of inclination of a line is the angle which a straight line makes with the positive direction of X axis measured in the counter - clockwise direction to the part of the line above the X axis. The inclination of the line is usually denoted by θ.
$>$ The inclination of X axis and every line parallel to X axis is 0°
$>$ The inclination of Y axis and every line parallel to Y axis is 90°
Definition: If θ is the angle of inclination of a non-vertical straight line, then $\tan \theta$ is called the slope or gradient of the line and is denoted by m.
Therefore the slope of the straight line is $m=\tan \theta, 0 \leq \theta \leq 180^{\circ}, \theta \neq 90^{\circ}$
Note: The slope of a vertical line is undefined.
Values of slopes

S.no	Condition	Slope	Diagram
(i)	$\theta=0^{\circ}$	The line is parallel to the positive direction of X axis.	
(ii)	$0<\theta<90^{\circ}$	The line has positive slope (A line with positive slope rises from left to right)	
(iii)	$90^{\circ}<\theta<180^{\circ}$	The line has negative slope (A line with negative slope falls from left to right).	

$>$ Two non-vertical lines are parallel if and only if their slopes are equal.
$>$ Two non-vertical lines with slopes m_{1} and m_{2} are perpendicular if and only if $m_{1} m_{2}=-1$.
Note:
$>$ Let l_{1} and l_{2} be two lines with well-defined slopes m_{1} and m_{2} respectively, then
(i) l_{1} is parallel to l_{2} if and only if $m_{1}=m_{2}$.
(ii) l_{1} is perpendicular to l_{2} if and only if $m_{1} m_{2}=-1$.
$>$ In any triangle, exterior angle is equal to sum of the interior opposite angles.
$>$ If the slopes of both the pairs of opposite sides are equal then the quadrilateral is a parallelogram.

Introduction for Exercise 5.3

Concept corner

Straight line: Any first degree equation in two variables x and y of the form $a x+b y+c=0$ where a, b, c are real numbers and at least one of a, b is non-zero is called "Straight line" in $x y$ plane.

Equation of coordinate axes

The X axis and Y axis together are called coordinate axes.

Equation of x axis is $y=0$

Equation of y axis is $x=0$

Equation of a straight line parallel to X axis

Let $A B$ be a straight line parallel to X axis, which is at a distance ' b ' Then y coordinate of every point on ' $A B^{\prime}$ ' is ' b '.
Therefore, the equation of $A B$ is $y=b$
Note:

www.waytosuccess.org

If $b>0$, then the line $y=b$ lies above the X axis
$>$ If $b<0$, then the line $y=b$ lies below the X axis
$>$ If $b=0$, then the line $y=b$ is the X axis itself.

Equations of a Straight line parallel to the Y axis

Let $C D$ be a straight line parallel to Y axis, which is at a distance ${ }^{\prime} c^{\prime}$. Then x coordinate of every point on $C D$ is $^{\prime} c^{\prime}$. The equation of CD is $x=c$.
Note:
$>$ If $c>0$, then the line $x=c$ lies right to the side of the Y axis
$>$ If $c<0$, then the line $x=c$ lies left to the side of the Y axis

$>$ If $c=0$, then the line $x=c$ is the Y axis itself.

Slope - Intercept Form

Every straight line that is not vertical will cut the Y axis at a single point. The y coordinate of this point is called y intercept of the line.
A line with slope m and y intercept c can be expressed through the equation $y=m x+c$
$>$ If a line with slope $m, m \neq 0$ makes x intercept d, then the equation of the straight line is $y=m(x-d)$.
$>y=m x$ represent equation of a line with slope m and passing through the origin.
Equation of Straight line in various forms:

	Name	Form
1	General form	$a x+b y+c=0$
2	Point - slope form	$y-y_{1}=m\left(x-x_{1}\right)$
3	Slope - intercept	$y=m x+c$
4	Two point form	$\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$

	Name	Form
5	Intercept form	$\frac{x}{a}+\frac{y}{b}=1$
6	Parallel to Y axis	$x=c$
7	Parallel to X axis	$y=b$

Introduction for Exercise 5.4

Concept corner

General Form of a Straight Line

The linear equation (first degree polynomial in two variables x and y) $a x+b y+c=0$ (where a, b and c are real numbers such that at least one of a, b is non-zero) always represents a straight line. This is the general form of a straight line.
Now, let us find out the equations of a straight line in the following cases
(i) parallel to $a x+b y+c=0$
$>$ The equation of all lines parallel to the line $a x+b y+c=0$ can be put in the form $\boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{k}=\mathbf{0}$ for different values of k.
(ii) perpendicular to $a x+b y+c=0$
$>$ The equation of all lines perpendicular to the line $a x+b y+c=0$ can be written as $\boldsymbol{b} \boldsymbol{x}-\boldsymbol{a y}+\boldsymbol{k}=\mathbf{0}$ for different values of k.
(iii) The point of intersection of two intersecting straight lines
$>$ Two straight lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ where the coefficients are non-zero, are
(i) parallel if and only if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$; That is, $a_{1} b_{2}-a_{2} b_{1}=0$
(ii) perpendicular if and only if $a_{1} a_{2}+b_{1} b_{2}=0$

Slope of a straight line $a x+b y+c=0$:
Slope $m=\frac{- \text { coefficient of } x}{\text { coefficient of } y}=-\frac{a}{b}, \quad y$ intercept $=\frac{- \text { constant term }}{\text { coefficient of } y}=-\frac{c}{b}$

